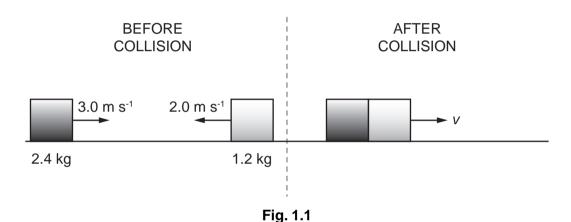
1	(a)	(i)	Define linear momentum.
		(ii)	Linear momentum is a vector quantity. Explain why.
	(b)	The	crumple zone of a car is a hollow structure at the front of the car designed to collapse
		wall	ng a collision. In a laboratory road-test, a car of mass 850 kg was driven into a concrete . A video recording of the impact showed that the car, initially travelling at 7.5 m s ⁻¹ , was ught to rest in 0.28 s when it hit the wall.
		(i)	Calculate
			1 the deceleration of the car, assuming it to be uniform
			$\mbox{deceleration} = \mbox{m s}^{-2} \mbox{ [1]}$ $\mbox{the average force exerted by the wall on the car.}$
			force = N [2]

	(11)	of the passenger cabin occurs. For this design of crumple zone, calculate the maximum speed of the car at impact.
		speed = ms ⁻¹ [2]
(c)	hea	different test, another car of mass 850 kg is travelling at a speed of 7.5 m s ⁻¹ . It makes a d-on collision with a stationary car of mass 1200 kg. Immediately after the impact, both s move off together with a common speed <i>v</i> . Calculate this speed.
		$V = \dots m s^{-1} [2]$
		[Total: 10]


2 (a) (i) State the principle of conservation of linear momentum.

.....[2]

(ii) Explain what is meant by an inelastic collision.

.....

(iii) Fig. 1.1 shows the head-on-collision of two blocks on a frictionless surface.

Before the collision, the $2.4\,\mathrm{kg}$ block is moving to the right with a speed of $3.0\,\mathrm{m\,s^{-1}}$ and the $1.2\,\mathrm{kg}$ block is moving to the left at a speed of $2.0\,\mathrm{m\,s^{-1}}$. During the collision the blocks stick together. Immediately after the collision the blocks have a common speed v.

1 Calculate the speed *v*.

 $v = \dots ms^{-1}$ [2]

2 Show that this collision is inelastic.

(b) Fig. 1.2 shows a helicopter viewed from above.

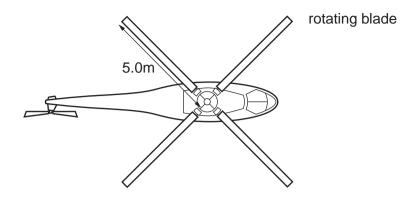


Fig. 1.2

The blades of the helicopter rotate in a circle of radius 5.0 m. When the helicopter is hovering, the blades propel air vertically downwards with a constant speed of $12 \, \mathrm{m \, s^{-1}}$. Assume that the descending air occupies a uniform cylinder of radius 5.0 m.

The density of air is 1.3 kg m⁻³.

(i) Show that the mass of air propelled downwards in a time of 5.0 seconds is about 6000 kg.

(ii)	Cal	Calculate		
	1	the momentum of this mass of descending air		
	2	$momentum = kgms^{-1} \hbox{ [1]}$ the force provided by the rotating helicopter blades to propel this air downwards		
	3	force =		
		mass = kg [1] [Total: 13]		

3 (a) State Newton's second and third laws of motion.

In your answer, you should use appropriate technical terms spelled correctly.

(i) second law

F4
 [1]

(ii) third law

(b) A golfer uses a golf club to hit a stationary golf ball off the ground. Fig. 1.1 shows how the force *F* on the golf ball varies with time *t* when the club is in contact with the ball.

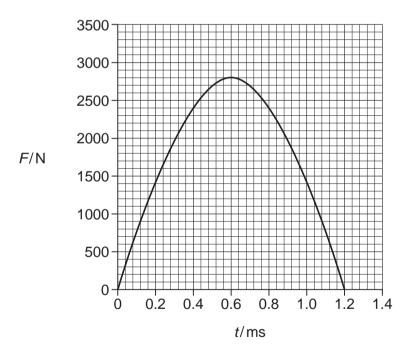


Fig. 1.1

(i) Estimate the area under the graph.

area = Ns [2]

(II) ^	Name the physical quantity represented by the area under the graph in (i).				
/	In your answer, you should use appropriate technical terms spelled correctly. [1]				
)	Show that the speed of a golf ball, of mass $0.046\mathrm{kg}$, as it leaves the golf club is about $50\mathrm{ms^{-1}}$.				
	speed = ms ⁻¹ [2]				
)	The ground is level. The ball leaves the ground at a velocity of $50\mathrm{ms^{-1}}$ at an angle of 42° to the horizontal. Determine the horizontal distance travelled by the ball before it hits the ground.				
	State one assumption that you make in your calculations.				
	distance = m				
	assumption				
	[5]				
	[Total: 12]				